165=16t^2+101+30

Simple and best practice solution for 165=16t^2+101+30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 165=16t^2+101+30 equation:



165=16t^2+101+30
We move all terms to the left:
165-(16t^2+101+30)=0
We get rid of parentheses
-16t^2-101-30+165=0
We add all the numbers together, and all the variables
-16t^2+34=0
a = -16; b = 0; c = +34;
Δ = b2-4ac
Δ = 02-4·(-16)·34
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{34}}{2*-16}=\frac{0-8\sqrt{34}}{-32} =-\frac{8\sqrt{34}}{-32} =-\frac{\sqrt{34}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{34}}{2*-16}=\frac{0+8\sqrt{34}}{-32} =\frac{8\sqrt{34}}{-32} =\frac{\sqrt{34}}{-4} $

See similar equations:

| -8(p=2)+p=4(p+3)=5 | | -4f=-5f+2 | | -2r=2–4r | | 4w+8=3w | | 6t=-10+7t | | 10(3-k)-3k=-30 | | 7–b=-2b | | (Q+4)-3g=1+g | | 1/6m+3=55/8 | | 3x+9=−24 | | 2x+6+3x+7=6x-3 | | 1/2c+10=5-7c | | 7y+16=44 | | -3.75x+8.5=-6.5 | | -3(x-2)+2x=-(-x+6) | | 4x+1/2=10.5 | | 100=-5(1+3x) | | 4(x+8)=-4 | | -191=-6+5(5x+3) | | 21x=2273 | | 3x+26=41 | | 144=8(5x+3) | | 4(3x-1)=4x+30 | | ½x+4=18 | | 7x-50=34 | | 19x-4=100 | | 8=-2/5y | | 165n=180n-360 | | 4(n+3)=5+n | | 2x+16=-4x-14 | | 650+88*m=112m | | -30x^2-6x+24=0 |

Equations solver categories